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a b s t r a c t

Dipolar soft-sphere (DSS) fluids in the dilute low-coupling regime are studied via Molecular Dynamic
simulations and the extension of a theoretical formalism previously used for dipolar hard spheres in
which new terms for the virial expansion of the radial distribution function corresponding to the three-
particle contribution are presented and tested for the zero and non-zero magnetic field case. A thorough
comparison with simulations shows that the extended formalism is able to account for the structure
factors of DSS with and without externally applied magnetic fields in the dilute low-coupling regime:
quantitative agreement between theory and simulations is found for dipolar coupling parameters lt2,
and volume fractionjt0:25. When l41 the new added term to the virial expansion is observed to play a
crucial role in order to match quantitatively theory and simulations at zero field. In the presence of an
external magnetic field our tests show that further improvements are needed and only new terms with
Langevin function dependences can significatively contribute to improve the predictions for the dilute
low-coupling regime. Numerical simulations show that despite that the ferrofluids considered here are in
the dilute low-coupling regime, when an external field is applied, important correlations along the
parallel direction to the field and depletion phenomena along the perpendicular direction are observed in
the averaged density surrounding a particle.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ferrofluids are colloidal suspensions of monodomain ferromagnetic
nanoparticles stabilized against aggregation by steric coatings (in
non-electrolyte solutions) or by electrical double layers (in aqueous
solutions). Despite the differences in sizes and magnetic materials
that can be used to make ferrofluid particles [1,2], the behavior
of a monodisperse ferrofluid system can be characterized by
two dimensionless parameters: the volume fraction of particles
j¼Nvp=V (where N is the number of particles, vp is the volume of a
particle and V the total volume of the system), and the dipolar
coupling parameter l¼ 0:5Udd=kBT , where Udd is the interaction
energy of two particles in head-to-tail contact. Typical ferrofluids
have a volume fraction of suspended magnetic material about 7% in
volume, raising to a 23% when their surfactant is included [3].
The value of l strongly depends on the material and size [2]:

conventional maghemite ðg#Fe2O3Þ or magnetite (Fe3O4) ferrofluids
with particle size 5–10 nm have a value of lo1, e#Co particles and
iron (Fe0.75Co0.25) dispersions have been reported to have typical
values of l% 2:5. More recently magnetite and Co particles of larger
size with l up to 7 and 14, respectively, has been synthesized [2].
Magnetite colloids extracted from magnetotactic bacteria have been
reported to have even larger dipole strengths ðl% 70Þ [2]. When a
uniform stationary magnetic field H is introduced, a third dimen-
sionless parameter, the Langevin parameter a& mH=ðkBTÞ (where
m is the typical magnetic dipole of the particles) is needed to
characterize the system. The use of j, l and a allows a generalized
description of ferrofluid systems.

In the non-aggregating regime lo2, the physical properties of
very dilute systems ðj-0Þ are well described using the framework of
the one-particle model [4], which treats the ferrofluid as an ideal
paramagnetic gas of particles suspended in a liquid carrier. However,
this model breaks down when either the particle concentration or the
strength of the dipole–dipole interaction are increased. Although in
this regime the number of aggregates is negligible, correlations
among particles exist. Several theoretical models have been proposed
in order to explain the magnetic properties of ferrofluids in this
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regime which are based on adapted versions of the mean-field [5,6],
and mean-spherical [7–12] models, as well as the thermodynamic
perturbation model [13,14]. In the non-aggregating regime, structure
factors determined experimentally are a valuable source of informa-
tion [15–18], but it is difficult to extract from them a detailed
knowledge about the correlations of the ferrofluid particles. Thus,
theoretical methods that can relate the observed structure factors to
the interparticle correlations in the ferrofluid are desirable. In order to
get insight about the observed radial distribution functions and
structure factors a theoretical framework has been recently proposed
[19] for the case of dipolar hard spheres (DHS) at zero-field in the low-
coupling regime lo2. However, that model has not been stringently
tested against numerical results.

In this work we aim to study in depth the low-coupling regime
via a combination of numerical simulations and an extension of the
theoretical formalism of Elfimova et al. [19] to the case of dipolar
soft-spheres (DSS) at zero and non-zero field. The soft-core
interaction here considered is a cut-shifted Lennard-Jones poten-
tial, also called Weeks–Chander–Andersen (WCA) potential [20], of
the form

UssðrijÞ ¼
e 1#2

s
rij

! "6
" #2

, rijo21=6s

0, rij421=6s

8
>>><

>>>:
ð1Þ

where rij is a distance between i and j ferroparticles, s is an effective
ferroparticle diameter including steric shell, and the energy parameter
e describes the shell hardness, Ussðrij ¼ sÞ ¼ e. The point dipole–dipole
interaction potential is

UdðijÞ ¼ # 3
ðmi ' rijÞðmj ' rijÞ
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ij

#
ðmi 'mjÞ

r3
ij

" #
, rij ¼ ri#rj ð2Þ

The extension of the theory for DHS to DSS systems is done by
using an effective hard-sphere diameter mapping. The predictions
of the theoretical model are then thoroughly compared to the
results of molecular dynamics (MD) simulations. Special emphasis
is given to the study of the observed anisotropy of the structure
factor in the presence of magnetic fields.

2. Theoretical model

The radial distribution function can be written in terms of a
virial expansion of the ferroparticle volume concentration j [21]

gðr12Þ ¼ exp #
Uhsðr12Þ

kBT
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where Uhs is the DHS potential. The coefficients bpð12Þ describe the
influence of the other p#2 particles on the probability density
of the two first ones and are defined by the p-particle cluster
integrals based on a diagrammatic expansion method [21]. For
typical ferroparticle sizes d) 10 nm, the dipolar coupling constant
is close to l) 1 and therefore Eq. (3) can be written as a power
series over l:

gðrÞ ¼ exp #
UhsðrÞ
kBT
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where distances are measured in particle diameter units r¼r12/d,
and ½1þhhsðr,jÞ+ is the hard-sphere radial distribution function,
which can be found, for instance, with the help of the Perkus–
Yevick approximation [21–23] or the virial expansion [24]. The

bd
3ðrÞ and bd

4ðrÞ contributions were first calculated in Ref. [19].
A previously non-tested three-particle contribution l3jbd

3,ðrÞ
which is the next term in importance in the virial expansion has
been taken into account in this work. That term can be calculated in
a similar way as described in [19] leading to the following
expression:

bd
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When an externally magnetic field is applied, it can be proved
that the radial distribution function can be written as

gðr,yÞ ¼ exp #
UhsðrÞ
kBT
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where LðaÞ ¼ cotha#1=a is the squared Langevin function, y is the
angle between vector r and the direction of the magnetic field.
The bdf

3 ðrÞ coefficient is already known from a previous work by
Ivanov et al. [25].

Although previous results with the three- and four-contribu-
tions calculated by the Ivanov and co-workers [19,25] strictly hold
only for DHS, it is very interesting to test if such theory can be or not
easily extended to dipolar soft spheres (DSS) using a simple and
naive effective hard-sphere diameter de:

de ¼
Z 1

0
1#exp #

Uss

kBT

! "# $
dr: ð6Þ

The effective repulsive energy is set equal to the thermal energy
during the simulations, that is e¼ kBT. This yields an effective hard-
sphere diameter de quite close to s: de ¼ 1:016s.

In order to test such extension of the theory to DSS and get
further insight about the dilute low-coupling regime of ferrofluids,
equilibrium MD simulations are performed using the simulation
package ESPResSo [26]. The simulated systems consist of N¼1000
point-dipole particles in a cubic simulation box of side length L
where periodic boundary conditions are assumed in all three-
directions. The calculation of long-range dipole–dipole interactions
has been substantially sped up with the help of a recently
developed dipolar P3M algorithm [27].

3. Simulation details

Ferrofluids are modeled as systems consisting of N spherical
particles of diameters, distributed in a cubic simulation box of side
length L. Similarly to the theory, we assume particles to be
monodisperse, and exhibit a permanent point dipole moment m
at its center, which can freely rotate in 3D. The interaction energy
between two particles is the sum of the short range interaction
equation (1) and the dipolar interaction equation (2). Periodic
boundary conditions are assumed along all directions. The long-
range dipole–dipole interactions are calculated using a recently
developed dipolar P3M algorithm [27]. The use of the dipolar P3M
method allows a much faster calculation of the dipolar long-range
correlations than the traditional three-dimensional dipolar Ewald
summation. The level of accuracy of the algorithm for computing
dipolar forces and torques is set tod) 10#4 in reduced units of force
f , ¼ fs=e and torque t, ¼ t=e.
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Equilibrium molecular dynamics simulations are performed
where particles are moved according to the following translational
and rotational Langevin equations of motions [28], for particle i the
equations are

Mi
dvi

dt
¼ F i#GT viþnT

i , ð7Þ

Ii '
dxi

dt
¼ siþm-H#GRxiþnR

i , ð8Þ

where F i, si, and H are the resulting force, torque and the external
magnetic field acting on the particle i, respectively. Mi and Ii are the
mass and the inertia tensor of the particle. The symbols GT and GR

stand for the translational and rotational friction constants,
respectively. nT

i and nR
i are Gaussian distributed random forces

and torques with zero mean, that satisfy the usual fluctuation–
dissipation relations. The variables can be given in dimensionless
form as length r, ¼ r=s, dipole moment ðm,Þ2 ¼m2=ðes3Þ, time
t, ¼ tðe=ðMs2ÞÞð1=2Þ, temperature T, ¼ kBT=e, and external magnetic
field H, ¼Hðs3=eÞ1=2. The simulations are performed at constant
temperature T*¼1. Since we are only interested in static obser-
vables, the values of the mass, the inertia tensor, as well as friction
constants GT , and GR are somewhat at our disposal. The particle
mass is chosen to be M¼1, and the inertia tensor I ¼ 1, the identity
matrix, to ensure isotropic rotations. We adopted GT ¼ 1 and
GR ¼ 3=4 which are observed in our systems to give a fast relaxation
towards the equilibrium. A reduced time step Dt, ) 15- 10#4 is
used. The runs are started from initial configurations with random
particle positions distributed over the simulation volume, and
randomly chosen orientations for the dipole moments of the

particles. Each system is first equilibrated for a period of 7- 105

time steps to ensure that the results are independent of the starting
conditions. In order to obtain a proper and almost uncorrelated
sampling, measures are taken at intervals of 15- 103Dt, for
another period of 2- 106 time steps. The number of particles
per system is N¼1000 in regular simulations, although several
extra runs (up to N¼10 000) have been performed in order to make
sure results do not suffer from finite-size effects.

4. Results

As in previous numerical studies [29,30], we compute the
structure factor as

SðqÞ ¼
1
N

XN

i ¼ 1

sinðq ' riÞ

 !2

þ
XN

j ¼ 1

cosðq ' rjÞ

0

@
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A
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where the wave vectors q have to be commensurate with the periodic
boundary conditions, i.e., q& ðqx,qy,qzÞ ¼ ð2p=LÞðl,m,nÞað0,0,0Þ,
where l, m, and n are integers. For systems without an applied
magnetic field, the fluid structure is rotationally invariant, and a
spherically averaged structure factor S(q), obtained by averaging over
all wave vectors of magnitude q¼ jqj, is enough to characterize these
systems. For the systems with a magnetic field applied along the
z direction, SðqÞ is anisotropic. Nonetheless, it has been shown in
previous studies [15,29,31] that it is enough to characterize those
systems two different structure factors: one parallel to the magnetic
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Fig. 1. A comparison of the structure factor data obtained at j¼ 0:15 with no applied field, circles stand for simulations, and the solid line for analytical theory results. The
value of l changes from top to bottom from l¼ 1 to 1.5, and 2. Solid lines represent theoretical predictions using all terms in Eq. (4) while red dashed lines represent the
theoretical predictions when the term l3jbd

3,ðrÞ is not considered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 2. A comparison of the structure factors parallel to the field predicted by the theory and those obtained in numerical simulations is depicted for several volume fractions
j¼ 0:05,0:15,0:25 at l¼ 1 and Langevin parameter a¼ 1.
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Fig. 3. Same as in Fig. 2 but for the component of the structure factor perpendicular to the magnetic field.
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Fig. 4. A comparison of the structure factors parallel to the field predicted by the theory and those obtained in numerical simulations is depicted for several volume fractions
j¼ 0:05,0:15,0:25 at l¼ 2 and Langevin parameter a¼ 1. Solid lines represent theoretical predictions using all terms in Eq. (50) while red dashed lines represent the
theoretical predictions when the term l3jbd

3,ðrÞ is not considered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Same as in Fig. 4 but for the component of the structure factor perpendicular to the magnetic field.
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field SðqJÞ and one perpendicular to the magnetic field Sðq?Þ, namely,

SðqJÞ ¼
1
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where qJ & qz ¼ ð2p=LÞn, q? & ðqx,qy,0Þ ¼ ð2p=LÞðl,m,0Þ, and
rxy,i ¼ ðxi,yi,0Þ. The rotational symmetry of the system along the
z-axis allows us to average the perpendicular structure factor as Sðq?Þ

where q? ¼ jq?j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

xþq2
y

q
.

Fig. 1 shows for systems without an externally applied magnetic
field a comparison of the isotropic structure factor S(q) between
theory (lines) and the numerical simulations (open circles) for
different values of the dipolar coupling parameter l¼ 1,1:5,2 at
fixed volume fraction j¼ 0:15. The solid black lines correspond to
the theoretical predictions obtained when the new virial term
l3jbd

3,ðrÞ is considered, while the red dashed lines correspond to
the results when such term is disregarded. A good agreement
between theoretical predictions and simulation results is observed
for wave vectors qs43 in the case of l¼ 1 and qs46 for l¼ 1:5,2.
The quantitative match increases when the new virial term is taken
into account. This fact is specially noticeable for the cases l41, and
as one expects due to the nature of the term l3jbd

3,ðrÞ increases in
importance with l. The analysis of the position of the peak
maximum positions show that in both theory and simulations, a
shift towards higher wave vectors is expected when either l or the
volume fraction j are increased. A careful study of the structure
factors in the dilute low-coupling regime and the analysis of the
underlying microstructure in the systems shows that when dealing
with structure factors, one must be very cautious doing an straight
identification of the peaks with chains or other types of clusters.

Figs. 2 and 3 show a comparison of the structure factors parallel
SðqJÞ and perpendicular Sðq?Þ to the magnetic field direction for the
case l¼ 1 and a¼ 1:0. Figs. 4 and 5 show SðqJÞ and perpendicular
Sðq?Þ for the case l¼ 2 and a¼ 1:0. In the presence of a magnetic
field, the theoretical predictions obtained when including the new
virial term l3jbd

3,ðrÞ do not bring any substantial improvement in
difference to the case a¼ 0. Only at the highest volume fraction
systems j¼ 0:25 a slight improvement is observed. The fact that
the new correction does not improve substantially the predictions
when external magnetic fields are applied can be explained as a
consequence of the fact that the new term does not contain a
Langevin function dependence. Therefore, this observation implies
that by adding high order terms that do not contain Langevin
function dependences will not bring any further improvement to
the theoretical predictions and therefore are not needed to explain
the ferrofluid low-coupling regime. New progress can only be
obtained from the derivation of analytical expressions for high
order terms having dependencies on the Langevin function. The
level of difficulty to derive new contributions of higher order
increases substantially and further refinements to the virial
expansion will be presented in a forthcoming work.

In Fig. 6 the differences between the averaged density around a
particle /rðr,zÞS and the mean bulk density r0 ¼N=V are pre-
sented for increasing external magnetic field strengths a¼ 0 and 5
(figures (a) and (b) respectively) corresponding to the case l¼ 2
and j¼ 0:25. Only results from numerical simulations are pre-
sented in this figure. The averaged density around a particle is
obtained by calculating the density of particles rðr,zÞ that sur-
rounds a given particle which is set as the origin of coordinates
ðr& ðx2þy2Þ1=2,zÞ and performing an average of rðr,zÞ over all
particles present in the system taken as the origin, and further
averaging over all the recorded conformations. In Fig. 7a and b, the

averaged density profile differences at r¼0 and z¼0, respectively,
are shown for the same case l¼ 2 and j¼ 0:25 than in Fig. 6 . It is
important to emphasize that the appearance of correlations like
those depicted in Figs. 6 and 7 for the case l¼ 2 and j¼ 0:25 are
also observed for all 1olo2 andjA ½0:05,0:25+ cases studied. Our
results show clearly that when the magnetic field is applied along
the z-direction, despite of the low value of the magnetic interaction
between particles l and the density (it also occurs at volume
fractions as low as j¼ 0:05) particle correlations exist and are
significant in both intensity and range. Thus, when a magnetic field
is applied the particles tend to prefer to align along the z-direction
with other particles forming kind of denser columnar regions while
depleting of particles the surrounding x–y region. This means that
although not noticeable by just looking at snapshots of the
simulations, particles in average tend to form preferred distribu-
tions along the direction of the external magnetic field even in the
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Fig. 6. A comparison of the differences between the averaged density around a
particle/rðr,zÞS and the mean bulk densityr0 ¼N=V for the casel¼ 2 andj¼ 0:25
for two different intensities of the external magnetic field a¼ 0,5 ((a) and (b),
respectively) are shown. Due to the symmetry of the plot for +z and #z, only the
upper part is plotted. By definition r& ðx2þy2Þ1=2. Only simulation data is plotted.
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case of the dilute low-coupling regime. Remarkably, our observa-
tions agree with the recent mean-field predictions of Ciftja [33]:
a very simple lattice gas model shows that diluted ferrofluids placed
under strong magnetic fields exhibit a second order transition from a
homogeneous distribution of particles into a phase with lamellar
(stripe) spatial ordering when temperature is reduced below a certain
critical temperature that depends on particle concentration. The
characterization of the transition found by Ciftja and the study of how
these existing correlations inside dilute low-coupling ferrofluids
contribute to the rheological and magnetic properties of the fluid
will be the object of a forthcoming work.

5. Conclusions

In this paper we have tested the suitability of extending a theoretical
formalism formerly intended to the case of dipolar hard spheres to

the case of dipolar soft spheres. A new term for the virial expansion of
the radial distribution function, l3jbd

3,ðrÞ, has been deduced, and a
stringent test of its correctness has been done by comparing the results
from numerical simulations to the theoretical predictions with and
without the new virial term. The study has included both zero and non-
zero applied external magnetic field cases.

We have found that despite of the naive and simple approach
the extended theory for DSS shows a reasonable agreement for
l) 1 and ao5. The agreement is further improved up to lt2, at
zero field, when the new virial expansion term l3jbd

3,ðrÞ is
considered. Nonetheless, new terms are needed in the case of
applied external magnetic fields to get a more quantitative agree-
ment between theory and simulations.

We regard the present theory as complementary to the rod
model developed by Pyanzina et al. [32] because it covers the
region of low values of the dipolar coupling parameter l where
Pyanzina model is not valid due to the pre-assumed existence of
stable structures like chains and rings. The combined use of both
theories leads to an accurate description of the structure factor for a
broad range of dipolar soft-sphere systems [30].

Numerical simulations in addition to assess the quality of the
theoretical framework and provide insight about the subjacent
microstructure, have revealed that even in the dilute low-coupling
regime in the presence of an external magnetic field, strong
correlations among particles exist that tend in average to align
particles into columnar-like regions aligned along the field. These
correlations may arise from a second order transition as noted
recently by Ciftja [33] and may have an important contribution to
the rheological and magnetic properties of the ferrofluids. We hope
the present results will stimulate new studies about the ferrofluid
structures and its correlations in the dilute low-coupling regime.
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